Sale!

B-Series: Algebraic Analysis of Numerical Methods – PDF ebook

B-Series: Algebraic Analysis of Numerical Methods – PDF ebook Copyright: 2021, Author: John C. Butcher, Publisher: Springer, Print ISBN: 9783030709563, etext ISBN: 9783030709563, Format: PDF

Original price was: $99.00.Current price is: $23.00.

Buy B-Series: Algebraic Analysis of Numerical Methods PDF ebook by author John C. Butcher – published by Springer in 2021 and save up to 80%  compared to the print version of this textbook. With PDF version of this textbook, not only save you money, you can also highlight, add text, underline add post-it notes, bookmarks to pages, instantly search for the major terms or chapter titles, etc.
You can search our site for other versions of the B-Series: Algebraic Analysis of Numerical Methods PDF ebook. You can also search for others PDF ebooks from publisher Springer, as well as from your favorite authors. We have thousands of online textbooks and course materials (mostly in PDF) that you can download immediately after purchase.
Note: e-textBooks do not come with access codes, CDs/DVDs, workbooks, and other supplemental items.
eBook Details:

Full title: B-Series: Algebraic Analysis of Numerical Methods
Edition:
Copyright year: 2021
Publisher: Springer
Author: John C. Butcher
ISBN: 9783030709563, 9783030709563
Format: PDF

Description of B-Series: Algebraic Analysis of Numerical Methods:
B-series, also known as Butcher series, are an algebraic tool for analysing solutions to ordinary differential equations, including approximate solutions. Through the formulation and manipulation of these series, properties of numerical methods can be assessed. Runge-Kutta methods, in particular, depend on B-series for a clean and elegant approach to the derivation of high order and efficient methods. However, the utility of B-series goes much further and opens a path to the design and construction of highly accurate and efficient multivalue methods. This book offers a self-contained introduction to B-series by a pioneer of the subject. After a preliminary chapter providing background on differential equations and numerical methods, a broad exposition of graphs and trees is presented. This is essential preparation for the third chapter, in which the main ideas of B-series are introduced and developed. In chapter four, algebraic aspects are further analysed in the context of integration methods, a generalization of Runge-Kutta methods to infinite index sets. Chapter five, on explicit and implicit Runge-Kutta methods, contrasts the B-series and classical approaches. Chapter six, on multivalue methods, gives a traditional review of linear multistep methods and expands this to general linear methods, for which the B-series approach is both natural and essential. The final chapter introduces some aspects of geometric integration, from a B-series point of view. Placing B-series at the centre of its most important applications makes this book an invaluable resource for scientists, engineers and mathematicians who depend on computational modelling, not to mention computational scientists who carry out research on numerical methods in differential equations. In addition to exercises with solutions and study notes, a number of open-ended projects are suggested. This combination makes the book ideal as a textbook for specialised courses on numerical methods for differential equations, as well as suitable for self-study.